

Department of Mathematics and Statistics Lake shore campus | 1032 W. Sheridan Road | Chicago, Illinois 60660 Phone 773.508.3558 | Fax 773.508.2123 | www.math.luc.edu

Common final exam for Math 117, December 13, 2023.

YOUR NAME:

SECTION:

INSTRUCTOR:

Directions:

- Print your name, section number and your instructor's name on this page in the space provided.
- This exam has 16 questions. Please check that your exam is complete.
- You have two hours to complete this exam. It will be graded out of 68 points.
- Show your work. Answers (even correct ones) without the corresponding work will receive no credit.
- You may use a calculator and the list of equations provided by the Department.
- When using decimals round your answers till three decimal places.
- Use of notes, books, any internet resources and electronic devices is NOT allowed.
- You may not communicate with anyone besides the instructor during this exam.

Good luck!

Problem	Score
1	/ 5
2	/ 6
3	/ 2
4	/ 4
5	/ 7
6	/ 4
7	/ 4
8	/ 4
9	/ 5
10	/ 2
11	/ 6
12	/ 5
13	/ 4
14	/ 3
15	/ 4
16	/ 3

- 1. (Points: 5) A small cafe spends on average \$0.50 to make a cup of coffee. The cafe also has a fixed daily cost of \$450 (for rent, wages, utilities, etc.). Let C, be the cafe's cost, for making x cups of coffee in a day.
 - (a) Find a formula for the daily cost C as a function of x cups of coffee. Hint: The cost includes the fixed daily cost as well as the cost for making all cups of coffee sold.
 - (b) Find the maximum number of cups of coffee the cafe can make within a budget of \$800.

2. (Points: 6) The weight W, in pounds, of the air in a hot air balloon is a function of H, the temperature of the air in degrees Fahrenheit, and satisfies

$$W = W(H) = \frac{3,969,000}{H + 460}.$$

The force, L, that lifts the balloon, in pounds, is given by

$$L = L(W) = 7489 - W$$

- (a) Find L(W(225)).
- (b) Explain your answer in one sentence and give the correct units.

3. (Points: 2) Use the complete graph of the function f(x) shown to estimate the domain of the inverse function $f^{-1}(y)$.

4. (Points: 4) Let $f(x) = \frac{4-3x}{5x-4}$. Find an expression for $f^{-1}(x)$.

(a) Fill in the blanks to give a piecewise-defined expression for f.

$$f(x) = \begin{cases} ?, & -1 \le x < 1 \\ ?, & 1 \le x \le 4 \end{cases}$$
(1)

- (b) Give the domain of f.
- (c) Give the range of f.

6. (Points: 4) The graph of y = f(x) is given below.

- (a) Give the intervals on which f is simultaneously increasing and concave down.
- (b) Give the intervals on which f is simultaneously decreasing and concave up.

7. (Points: 4) The table below gives the atmospheric pressure P = f(h), in torr, at an elevation of h km above the earth's surface.

h (km)	0	2	4	6
P (torr)	760	571	429	323

(a) Based on the given information determine if the function f(h) is increasing / decreasing/ neither.

(b) Complete the table below with the average rates of change of f over the given interval.

Interval	$0 \le h \le 2$	$2 \le h \le 4$	$4 \le h \le 6$
Rate of change $\Delta P / \Delta h$	-94.5		

(c) Based on the results of your calculations in the part (b) determine if the function f(h) is concave up / concave down / neither ?

8. (Points: 4) Find a formula for the parabola shown below.

- 9. (Points: 5) Let $y = 8 6x + x^2$.
 - (a) Identify the vertex of this function.
 - (b) Write the equation in vertex form.

10. (Points: 2) The graph of the function y = g(x), consisting of a line segment and a semicircle is shown for $-3 \le x \le 2$. Graph the transformed function y = g(x-1) + 2 on the same grid.

11. (Points: 6)

- (a) The point (1,0) is on the graph of y = p(x). Give the coordinates of the corresponding point on the graph of the transformation q(x) = -p(2x) + 5.
- (b) Let $p(x) = x^3 1$. Write and simplify a formula for the transformation q(x) = -p(2x) + 5.

12. (Points: 5)

The speed of a ship u is related to its hull length l by the following formula

 $u = k\sqrt{l},$

where k is a positive constant.

- (a) Find the constant k if a ship with hull length 225 meters traveling 9 meters/sec?
- (b) Using the formula find the hull length of the ship traveling 6 meters/sec.

- 13. (Points: 4) Use the function formula $y = x^2(x^2 3)(2 + 5x)$ to answer the following questions.
 - (a) What is the polynomial's leading term?

(b) What is its degree?

(c) Using mathematical notations describe the long-run behavior of the polynomial as $x \to \infty$.

(d) Using mathematical notations describe the long-run behavior of the polynomial as $x \to -\infty$.

14. (Points: 3) The function f is a rational function. Its graph is shown below. Give a possible formula for f(x).

15. (Points: 4) The population of Mathville (in thousand) as a function of time t years after 2000 is given by

$$P(t) = 100 \left(\frac{6t+4}{3t+5}\right)$$

- (a) Find $\lim_{t\to\infty} P(t)$.
- (b) Give a practical interpretation for your result in one sentence.

16. (Points: 3) For the given function $y = \frac{x-1}{x^2 - 4x + 3}$ find the coordinates of any holes (if any of those exist).

Formulas

Average rate of change: $\frac{f(b) - f(a)}{b - a}$

Slope-intercept form: y = b + mx

Point-slope form: $y - y_0 = m(x - x_0)$

Standard form: Ax + By = C

Quadratic function: $y = ax^2 + bx + c$

Factored form: y = a(x - r)(x - s)

Quadratic formula: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Vertex form: $y = a(x - h)^2 + k$

Power function $y = kx^p$

Directly proportional: y = kx

Inversely proportional: $y = \frac{k}{x}$

Factored form of a polynomial: $p(x) = c(x - a_1)(x - a_2) \cdots (x - a_n)$